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Boundary shock waves 

By E. DALE MARTIN 
Ames Research Center, NASA, Moffett Field, California 

(Received 28 July 1966) 

The possible occurrence of a viscous region near a surface from which there is 
rapid eBux of gas, accompanied by large heat transfer, is postulated and in- 
vestigated theoretically. Such a viscous region, denoted as a boundary shock 
wave, may occur in the case of a large high-speed meteor entering the earth’s 
atmosphere, when a very high rate of vaporization induces translational non- 
equilibrium. The conditions across a boundary shock wave and its structure are 
calculated from the appropriate macroscopic equations reduced to closed-form 
expressions under the restrictions of a perfect gas, flowing at constant total 
enthalpy. 

1. Introduction 
Recently attention has been drawn to  the flow of gases at  very high speed out 

of a solid or liquid surface. Examples of the mass-transfer process include: blow- 
ing of gas through a finely porous solid surface, sublimation, and vaporization 
from a liquid surface. This paper is concerned with, and postulates the occurrence 
of, a possible viscous gasdynamic phenomenon, denoted here as a boundary shock 
wave, under certain conditions in these flows. It appears not to have been con- 
sidered previously.? 

A boundary shock wave may be defined as a thin region of viscous flow adjacent 
to a surface from which gas is flowing at a very high rate (high Reynolds number 
based on characteristic dimensions of the injected flow) with significant heat 
conduction. In  the limiting cases of one-dimensional flow normal to the surface, 
the viscous stress is purely viscous-compressive, as in a normal shock wave, with 
no shear present. 

The postulation of this viscous boundary phenomenon arose in the considera- 
tion of what boundary conditions to apply in the calculation of the essentially 
inviscid bulk of the vapour (or injected gas) flow at high Reynolds number under 
conditions where heat conduction at  the wall is expected. The rapid decay of the 
viscous stress and heat-conduction flux over a small distance would allow a rapid 
transition between an inviscid solution for the flow out of the wall and wall con- 
ditions (such as heat conduction) that would be otherwise incompatible with the 
inviscid-flow solution. The boundary shock wave is therefore a ‘ quick-transition 
region’ belonging to the class of asymptotic phenomena discussed by Friedrichs 

t The present paper is intended to clarify the boundary-shock concept introduced in 
NASA TN 0-3195, January 1966, by the same author. That report may be consulted for 
details of the theoretical development. 
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(1955). It is like a boundary layer in that viscous effects are confined to the thin 
layer adjacent to the wall, but it is also like a viscous shock wave in that the flow 
is normal to the layer and the viscous stress is compressive rather than shearing. 

The viscous effects characterizing the boundary shock wave may be most 
easily understood as effects of translational (and perhaps rotational) non- 
equilibrium of the molecular flow (to be discussed). The decay of viscous effects 
with distance from the surface corresponds to the relaxation of the translational 
non-equilibrium. In the limiting case of very large Reynolds number with steady 
flow normal to the surface, the macroscopic flow structure within the viscous 
region is governed essentially by the steady one-dimensional Navier-Stokes 
equations (a )  if the gradients of velocity and temperature are not too large, and 
( b )  if the flow is not turbulent (as may occur in the case of blowing through pores, 
for example). The same equations have been successfully used to study shock- 
wave structure. Professor Liepmann and his co-workers (Liepmann, Narasimha 
& Chahine 1962) have shown that the structure of most shock waves, especially 
in the downstream portion, is described very well by the Navier-Stokes equa- 
tions. The structure of a boundary shock wave corresponds in many cases to a 
downstream portion of a simple shock-wave solution. (Note then that the 
boundary shock may be entirely subsonic.) Calculation of the flow through a 
boundary shock will therefore be based largely on the wealth of existing literature 
on shock waves (see especially the monographs by Hayes (1960) and Lighthill 
(1956) for theory and references). 

A particular case where the possible occurrence of the boundary shock would 
be of interest is in the vapour flow in a certain class of meteoric fireballs entering 
the earth’s atmosphere at very high speed. In  this case, the translational non- 
equilibrium is induced by the high rate of vaporization, driven by a high rate of 
radiation absorption at the surface, with the accompanying necessarily large rate 
of heat conduction across the liquid layer that is required to raise it rapidly to 
vaporization temperature. An idealization of the meteor problem will be con- 
sidered in a final calculation. (For pertinent discussion of large high-speed 
meteors, refer to Allen & James 1964.) 

2. Possible occurrence of boundary shock waves 
2.1. General remarks 

In  considering the calculation of flow over a body, such as a blunt body with 
continuous mass transfer out of the surface, one is interested in (a)  possible 
viscous effects, and (b) possible regions where viscous effects can be neglected. 
The presence or absence of viscous effects in any region depends on two things: 
( a )  some source of viscous effects, that is, a source of translational non- 
equilibrium, and (b)  the magnitude of an appropriate local characteristic Rey- 
nolds number. A flow with small characteristic Reynolds number is all viscous 
if there is a source of viscosity or translational non-equilibrium. A flow with large 
characteristic Reynolds number is nearly all inviscid, except for possible very 
thin regions where the gradients, on which the viscous flux terms depend, are 
large. In those thin regions would be found some source of translational non- 
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equilibrium, such as shear at  a boundary or at  an interface, and such as the mixing 
of the molecules in a shock wave between two substantially different average 
states. 

For this discussion, consider the example of steady gas flow out of a curved 
surface, with an opposing external flow and an interface between the two flows- 
Refer to figure 1, on which the directed lines are streamlines, b denotes the 
boundary, and L is the distance from the boundary to the stagnation point 0 
on the interface. The boundary b is assumed to be where the mass transfer process 

FIGURE 1. Flow with stagnation point. 

is essentially completed and the flow is essentially normal to the surface. In  the 
case of vaporization, b is a location where the phase change is essentially com- 
pleted, that is, at  a point where the molecules are essentially free of intermolecular 
forces except during isolated collisions. A characteristic Reynolds number for the 
injected flow is Re, = LIZv, where 1, = j ib/pbthb is the ‘viscous length’ based on the 
longitudinal viscosity coefficient, ,Z, mass density, p, and flow velocity, u, at b. 
As long as Re, is small, the flow of the injected gas is entirely viscous. If also there 
is a high Reynolds number external flow, then the viscous-flowing injected gas is 
simply part of a boundary layer of the external flow. If the mass-transfer process 
is essentially an equilibrium process, then the source of viscosity in the injected 
flow is simply the shear at the interface. There is a large body of past and current 
literature on investigations of this aspect of mass transfer (with small Re,). 

2.2. Conditions for occurrence of a boundary shock wave 
Consider now the case of very large Re,. As Re, first increases from the small 
value, the boundary layer is effectively blown off, leaving the viscous shearing 
effects confined to a thin region at  the interface. As Re, becomes very large, it is 
evident that the bulk of the injected flow must become essentially inviscid, 

22-2 
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except within very thin regions surrounding any sources of translational non- 
equilibrium. 

If there is no heat conduction (or source of translational non-equilibrium) a t  b 
in figure 1, then the flow a t  b for large Re, is inviscid, and governed by the Euler 
equations of inviscid flow. If the influx were supersonic in that case, then there 
would have to be a detached shock wave somewhere within the injected flow in 
order for the flow to decelerate to subsonic and then zero velocity at the stagna- 
tion point. 

If there is  heat conduetion or viscous stress at the boundary b ,  then the Euler 
equations are not uniformly valid up to the boundary, since they do not admit 
heat conduction or viscous stress. However, the Euler equations are just an 
approximation to the Navier-Stokes equations, which contain the higher 
derivatives that (a )  allow for additional conditions on heat conduction and vis- 
cous stress to be satisfied at  the wall; and ( b )  allow rapid variation in a very thin 
region to meet those conditions. Thus if there is significant heat conduction or 
viscous stress (translational non-equilibrium) at  the boundary of the injected gas 
with large Re,, that condition could not be satisfied by an inviscid flow, so there 
would have to be a thin viscous region of rapid transition near the body in order 
that the condition could be satisfied. That region of rapid variation of the flow 
properties, if it occurs, is denoted as a boundary shock wave. Conversely, for a 
boundary shock wave to occur in figure 1 for large Reb, there would need to be a 
source of translational non-equilibrium at (or just to the left of) b. Apparently, 
therefore, the necessary and sufficient conditions for the occurrence of a boundary 
shock wave are: (a)  large Re,, and ( b )  significant heat conduction or viscous stress 
(significant translational non-equilibrium) at b. 

The question of whether a boundary shock wave will occur is now seen to be 
equivalent to the question of whether there is significant viscous stress and/or 
heat conduction (i.e. significant translational non-equilibrium) in the gas at  b for 
large Re,. In  each specific problem, in order to determine whether a boundary 
shock would occur, or, equivalently, whether the viscous stress T and heat- 
conduction flux q, at b are significantly different from zero, a completely deter- 
mined system of equations must be satisfied in order to determine rb and qcb along 
with the other boundary parameters. 

2.3. Xignijieance of the equilibrium solution 

In  any given problem with large Re,, it will be possible to find an ' equilibrium 
solution', that is, a solution with no boundary shock wave, by arbitrarily as- 
suming qcb = T b  = 0 instead of applying an appropriate ' translational-non- 
equilibrium condition ' (say, on the velocity, or temperature, or heat flux, etc.) 
at the boundary. Arbitrarily assuming r and qc to vanish identically would yield 
a determined set of equations if the appropriate translational ,non-equilibrium 
condition is omitted (to be seen in $4). Under some conditions this local transla- 
tional equilibrium assumption would be justified, but not generally. When the 
vaporization rate is high, so that significant translational non-equilibrium is 
expected (to be discussed), one may include the translational non-equilibrium 
variables T and qe in the equations, use the phenomenological relations expressing 
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r and qc in terms of gradients of flow variables, use a roughly approximate 
translational non-equilibrium boundary condition on the velocity, and determine 
the effects of translational non-equilibrium which constitute the boundary shock 
wave. 

2.4. Translational non-equilibrium in very rapid vaporization 

It is well known that vaporization at  low and moderate rates is, for all practical 
purposes, an equilibrium process, taking place reversibly at constant temperature 
and pressure. However, at sufficiently high vaporization rates, one must suspect 
possible translational non-equilibrium effects to become significant in the 
vaporization process. Those effects are described in this section. 

Radiation Relaxation 
absorption region 

and in vapour 
Cold vaporization (boundary Inviscid 
solid Solid Liquid region shock wave) vapour flow 
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FIGURE 2. Diagram of vaporization. 

2.4.1. Rapid vaporization driven by external radiation. Consider very rapid 
vaporization, driven by absorption of intense external radiation from the right 
in figure 2. Consider only a material that vaporizes from a liquid surface and has 
no chemical reactions after the vaporization. (In this idealization, as for a material 
of monatomic molecules, the vaporization is a purely physical process.) Because 
of the large radiative heat flux from the right and sharp temperature drop-off 
with distance into the liquid, only the liquid surface is a t  vaporization tempera- 
ture. As a result, it is assumed that there is no bubbling or spraying of liquid drops. 
The latter is probably valid for a viscous liquid such as meteoric stone, but may 
not be for meteoric iron (see opik 1958). Assume the radiation is absorbed and the 
molten material vaporized between the 'surface' s and the 'boundary of the 
vapour', b. At b, the material has attained both the vapour density and the in- 
creased 'internal energy of vaporization', or the added potential energy of the 
individual molecules that have been separated from the constraints of the inter- 
molecular forces. If the material at  liquid density is highly opaque to the radia- 
tion and the vapour is relatively transparent to the radiation, then the distance 
from s to b within which most of the radiation is absorbed, would be extremely 
small, on the order of a few molecular diameters. Denote that distance by E. 

2.4.2. Expected translational non-equilibrium. Some of the absorbed-radiation 
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energy is used to vaporize the liquid molecules within E by giving them sufficient 
additional translational energy to completely separate them from each other 
against the intermolecular forces that held them in the liquid state. Some of the 
energy must be conducted into the liquid by collisions in order to raise the tem- 
perature of the liquid so that it can be vaporized an instant later. The molecules 
absorbing the radiation within E conduct the heat. 

At small vaporization rates, the conduction heat flux is small, as evidenced by 
the fact that the process is then known to be nearly reversible (no significant 
entropy production). As the radiation flux increases, however, the conduction 
heat flux must increase to make the vaporization rate increase. As the conduction 
and vaporization rates increase, a condition should be reached where the vapor- 
ization can no longer be considered as an equilibrium process and is no longer 
reversible. 

With a large conduction heat flux present as the molecules begin to separate 
into the vapour state, the translational non-equilibrium evidently would occur 
as a lag (on the average) in transferring the energy from the translational mode 
in the axial direction (normal to the surface) to the lateral degrees of freedom of 
the molecules. Denote the co-ordinate in the axial direction by x (distance to the 
right of b in figure 2), the lateral co-ordinates by y, z ,  the molecular velocity in the 
x-direction by u + c1 (where u is the average velocity) and either of the lateral 
molecular velocity components by c2. Conduction tlo the left is caused by the cI 
components. A number of collisions would be needed to get the same random 
energy distribution in the lateral modes as in the axial mode, so the above 
mentioned lag would occur in the accommodation of the lateral energy modes 
because of spaces between the molecules in E .  The lag makes 3 < z, where (-) 
is the avera,ge, weighted by the velocity-distribution function, over all values of 
velocity (e.g. see Vincenti & Kruger 1965). The viscous stress r is a measure of 
this lag, as can be seen from the one-dimensional-flow kinetic-theory expression 
for a perfect monatomic gas, r = $ p ( z  - g), corresponding to which also is the 
heat-conduction flux qc = + p c q  Because of the lag, r is negative. If the 
temperature gradient and velocity gradient are not too large by the time the 
vapour state is achieved (at b ) ,  the viscous stress and heat-conduction flux can be 
represented there also by the linear relations 

T = ,Edu/dx, qc = - kdT/dx, (2.1) 

where p = h+2,IX = $lL+*K,  (2-2) 

and where ,IX is the shear-viscosity coefficient, h is the second viscosity coefficient, 
K is the bulk viscosity coefficient, and k is the coefficient of thermal conductivity. 
(2.1) can be regarded either as the phenomenological relations or as derived as 
the first translational non-equilibrium corrections to the local-equilibrium 
(Euler) approximation in the Navier-Stokes level of the Chapman-Enskog pro- 
cedure in kinetic theory. Thus, if the accommodation lag exists at b, the velocity 
gradient there, from (2.1)) is negative. The viscous stress r ,  and its corresponding 
viscous dissipation of energy, are then seen to constitute a retarding effect 
opposing the acceleration in the phase change. From another point of view, a 
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negative value for r is compressive, thus opposing or retarding the expansion in 
the phase change. 

The lag that develops in the extremely thin region of the radiation absorption 
and phase change (i.e. within E )  must then relax, or equilibrate, with distance 
away from the source. That is, the viscous effects must decay. The distance 
within which the viscous effects decay is the thickness of the boundary shock 
wave. That viscous relaxation will be determined in $ 3  by solving the Navier- 
Stokes equations. 

2.4.3. Relationship between accommodation lag and density undershoot in phase 
change. It will be noted that if the lag occurs, so that 7 6  = (Pdu/dx)b is negative, 
then the velocity must reach a maximum slightly before the end of the phase 
change, and so by conservation of mass, the density would a t  the same time have 
a minimum value. This possibly unexpected ‘density undershoot ’ could be 
explained as follows. Let the velocity gradient during the phase change be separ- 
ated into two contributions 

du/dx = (dU/dX)phase -k (du/dx)visc ,  (2.3) 

where (du/dz)phase is the contribution representing the expansion process due to 
the molecules separating in the phase change and is the only essential contribu- 
tion to duldx if the vaporization rate is low or moderate. This quantity is always 
positive and has a large peak (maximum slope of u curve) near the middle of the 
phase change. When the above mentioned lag occurs, (du/dx),,,, represents the 
small negative contribution due to the retarding effect of that lag. It is expected 
that (du/dx),,,, would change from zero to a small negative peak value, then begin 
to relax near the end of the phase change. At b, (dU/dX)phase is zero and 

(du/dx)visc = ( 7 / f i ) b  < O* 

By plotting qualitative curves for (dU/dX)phase and (du/dx),,,, and graphically 
adding them together (see figure 3 in Martin 1966) to get duldx, one will see that 
duldx would &st have a large positive peak, then go through zero to small 
negative values, with a minimum point before b is reached. Where duldx goes 
through zero, u is at a maximum point and the density p is at  a minimum point, 
just before the phase change is completed, thus causing the density undershoot 
in the phase change. 

3. General theory of the plane laminar boundary shock wave in a 
perfect gas with p ;̂. = 1 

3.1. Asymptotic description and one-dimensional $ow 

In  the development of the boundary-shock-wave theory, two viewpoints may be 
taken. One may consider either a purely one-dimensional flow out of a plane 
surface of infinite extent at  a value of Reb based on an arbitrary distance from the 
surface, or one may consider a configuration such as sketched in figure 1 in the 
limit as Re,+m (with normal injection), which turns out to be equivalent, 
locally, to the former viewpoint. 
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For the purely one-dimensional flow case, the outer boundary conditions for 
the viscous region are simply the relaxation conditions: 

x-foo: r+o, qc+o. (3.1) 

From the other viewpoint: if Re, is very large in figure 1, the viscous region a t  
the body, if it occurs, must be very thin. The effects of curvature are then higher 
order and can be neglected. Thus in the limit as Reb+oo, the wall can be con- 
sidered to be plane, locally, with one-dimensional flow normal to the wall. Also 
in this limit, the slopes of the variables outside the thin region are higher order, 
so the limit process requires the variables (e.g. velocity, temperature, pressure) 
to approach asymptotically to the values just outside the region (ue, T,, pe ,  etc.). 
Since these values are unknown, the asymptotic first-order outer boundary con- 
ditions can be written simply as 

x+m: du/dx+O, dTldx-fO, (3.2) 

which are equivalent to conditions (3.1), with (2.1). 
For either of these two viewpoints, the one-dimensional configuration sketched 

in figure 2 is appropriate in the case of rapid vapour ablation. In  the case of blow- 
ing through a finely porous surface with a strong heat source present, if the flow 
is not turbulent, b is a location where the velocity vector is essentially normal to  
the surface. 

The integrated forms of the exact equations for conservation of mass, 
momentum, and energy in one-dimensional steady flow in a non-accelerating 
co-ordinate system are pu = m, (3.3) 

pu2+ f = c,, (3.4) 

(3.5) pu(e + +u2) + q - uf = C,, 

where m, C, and C, are constants of integration, p is the mass density, f is the sum 
of the ‘ surface forces’ per unit area in the %-direction on an element of mass, e is 
the internal energy per unit mass, and q is the heat flux in the x-direction, positive 
to the right. These equations apply between any two points in figure 2 .  Therefore 
the general laminar theory of the boundary shock wave (essentially the region 
from b to e in figure 2 )  can be worked out in terms of ‘boundary parameters’ 
(conditions at  b) ,  and hence independently of the mass-transfer process. 

With subscript b denoting the value of any variable at  b, one may write by 
definition 

In any given application these boundary parameters would be evaluated by 
solving a determined set of equations. An example will be considered in § 4. 

x=xb=O: u=u,, T = T , ,  qc=qc,.. (3.6) 

For the calculation of the gas-flow region from b to e,  

f = - p + 7 ,  4 = qc+q,, (3.7) 

where p is the thermodynamic pressure, 7 and qc are given by (2.1), and qr is the 
radiative heat flux. For simplicity, radiation absorption and emission in this 
region are neglected, so that q7 is assumed constant from b to e. 
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h = e+PlP, (3.8) 

(3.9) 

It is convenient to make use of the specific enthalpy, 

and to consider a thermally and calorically perfect gas, for which the equations 
of state are p = pRT, h = cpT, e = c,T, 

where R, cp ,  and c, are constants related by 

c,/c, = y, cp - C, = R. (3.10) 

It is also convenient to define the parameters 
N 

Pr E , b , l k ,  Mb E ub(yRTb)-i, ch, -q,..(&pbUg)-', (3.11) 

and the variables 

(3.12) 

8 U~2[C,T+~u2-(c ,Tb+guf) ] ,  (3.13) 

in terms of which (3.3)-(3.5), with conditions (3.2) and (3.6), are to be solved in 
the following sections. The special case Pr = 1 will be considered. In  general, an 
assumption of Pr = 1 should not be over-restrictive since Pr z 1 for most real 
gases, as pointed out by Liepmann, Narasimha & Chahine (1962). 

N 

N N 

N 

3.2. Xtructure of a plane boundary shock for Pr = 1 

Use of % = 1 yields 

so that the energy equation (3.5) with use of (3.3), becomes simply 

with the conditions 

(Pbu;)-'(-qc+rU), (3.14) 

ae/aE - B = (dB/d&, (3.15) 

t =  0, e = 0; (+m, ae/dt+o. (3.16) 

The only possible solution is 

with the consequent results from (3.13) and (3.14) 

B = o = aept, (3.17) 

N 

for Pr = 1:  qc = ru, (3.18) 

or 

cp T + +u2 = constant, 

T = 1 + + ( ~ - 1 ) M ; ( l - U 2 ) .  

( 3 . 1 9 ~ )  

(3.19 b )  

This is the 'constant-total-enthalpy solution', and (3.18) and (3.19) are the same 
results as are well known for a simple shock wave. 

The momentum equation (3.4) with use also of (3.3), (3.9) and the result 

d%?/dg = UZ - b + c/U, 
(3.19 b ) ,  becomes 

with the conditions 
(3.20) 

- E =  0, u =  1;  $+a, dU/dt+O, (3.21) 



346 E .  Bale Martin 

where 

The solution for d2 > 0, where 
d = (b2 - 4ac)t 

(3.22) 

(3.23) 

(3.24) 
2a%-b+d 2a-b-d  
2au- b - d ’  2a- b + d  

&2&= ( a-b+c ) ( 
au2- bu+c 

is 

from which, given y ,  Mb and Chc one can calculate 4 versus [. Then the variation 
of the other variables with [ is obtained by using (3.19b) for 

p = l /u; 13 p/pb = PT. (3.25) 

and 

Results for a typical case are shown in figure 3. 

2.0 

1 -5 

1 -0 

0 5  

0 1 2 3 

N 

FIGURE 3. Typical boundary-shock structure ( y  = $, Pr = 1, Ma = 1, ChC = 0.5). 

N 

3.3. Conditions across a boundary shock for Pr = 1 

With the result (3.18), one can obtain useful explicit expressions relating the 
conditions across a boundary shock wave (i.e. at  b and e) for Pr = 1 without 
further consideration of the detailed structure for each case. 

From (3.3)-(3.5) can be obtained an expression for a boundary shock wave that 
is analogous to the Rankine-Hugoniot relation for a shock wave (see Liepmann 
& Roshko 1957, p .  64)  

N 

(3.26) 
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In a manner similar to the development of the Prandtl relation for a normal 
shock wave (see Liepmann & Roshko 1957, p. 57) ,  one can also obtain for a 
boundary shock 

where a* is defined bv 

(3.27) 

(3.28) 

As rb+O (with pe/p, + l), (3.27) reduces to the Prandtl relation, which deter- 
mines that flow through a normal shock wave must go from either supersonic to 
subsonic or vice versa (see Liepmann & Roshko 1957, p. 57). For a boundary 
shock, with Tb + 0,  such a restriction is not imposed, and both u, and Ub may be 
subsonic. 

Expressions for the 'jump conditions' (Pelpa, T,/Tb, etc.) in terms of y ,  Mb and 
chc are easily obtained, for example, starting with (3.24), letting [-+a), U N Ue 

Pb/Pe = ue/ub = (b/2a) - [(b/2a)2- (c/a)l'. (3.29) 

Then from the energy and momentum equations 

%/Tb = + i(y- Mi[1 - (Pb/Pe)21, (3.30) 

Pe/Pb = -Pb/Pe+&Clh,], (3.31) 

and = (ue/ub)(q/Tb)- ' .  (3.32) 

Expressions in terms of y ,  Mb andp,/pb will also be useful. From (3.31), (3.29) 
and (3.22) one can obtain 

(3.33 a)  

where A' = 1 + 2117- 1)Mg, B' = (pe/pb)/(y- 1 ) x g -  (3.333) 

Calculation of chc, T,/Tb, and Me then follows from (3.31), (3.30) and (3.32). 
Similarly, expressions may be found in terms of given y, Mb and Me by first 

eliminating T,/T, from (3.30) and (3.32) to obtain 

Pb/pe = - B' + [(B')2 + A']+, 

(3.34) 

Calculation of Te/Tb, pe/pb and chc then follows respectively from (3.30), from 

and from (3.31). 

specific entropy across the boundary shock as 

Pe/Pb = (Pb/Pe)  (3.35) 

With any of the above formulations, one can calculate the total change in 

As se-sb = R ( y -  l)-'ln[(Pe/Pb)(Pb/Pe)Yl, (3.36) 

of which the contribution due to transport of entropy is 

= -qq,/PbubTb = RyMg@hc, (3.37) 

and of which the remaining part is the entropy production h i s  = As - Aes. 
Example curves of Pel& versus Mb are shown plotted in figure 4 for y = 3, 

Pr = 1, and for several values of 4, (see Martin 1966 for further details and 
N 
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results). For the limiting case Chc = 0, there is no boundary shock. If the efflux is 
subsonic (it& < 1) and Chc -+ 0, the boundary shock simply vanishes. If Hb > 1 
and Chc+O, the boundary shock becomes a detached simple shock wave (cf. 
$2.2). 

I I I I I I I 
0 1 2 3 4 5 6 

Mb 
N 

FIGURE 4. Density ratio and velocity ratio across a boundary shock ( y  = t, Pr = 1).  

4. Approximate special application of the general theory to rapid 
vapour ablation 

The purpose of this section is to apply the boundary-shock-wave theory to an 
approximate calculation of rapid vapour ablation of a material having the pro- 
perties of a stone meteor entering the earth's atmosphere under conditions for 
which the boundary shock wave might be expected to occur. In  this application, 
the parameters in the boundary-shock-wave theory will be evaluated by a deter- 
mined set of equations, including a 'non-equilibrium condition' on the mass flux 
that allows non-trivial evaluation of the translational non-equilibrium variables, 
r and qe, as discussed in §$2 .2 ,2 .3  and 2.4. 

For simplicity the idealizations described in Q 2.4.1 and $3  are used. The thick- 
ness of the region from a to e in figure 2 is assumed to be small in comparison to 
the body curvature (which is easily justified after the calculation is made), so the 
first-order approximation of one-dimensional flow is valid. The applicability of 
the properties of a perfect gas in the vapour from a stone meteor will be discussed. 
The assumption of steady flow is here one of quasi-steady flow, for which time 
derivatives are neglected in comparison to space derivatives. The ablating surface 
is considered to be receding back into the liquid material with constant (locally 
in time) speed us, so that in figure 2 the surface x = xb = 0 is stationary and the 
wall material (to the left of s )  is moving toward the surface with constant velocity 
u s -  
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4.1. Equations for the solid and liquid 

For the solid and liquid regions in figure 2, an additional equation of state: 
p = constant is added to the system of (3.3)-(3.5)) which apply to the material 
regardless of phase. The results are then 

Pa = ~ s ,  u a  = us,  f a  = fs, (4.1) 

psus(es - e a )  = - qcs ; (4.2) 
(4.3) where 

where subscripts a,  f and s denote values at the respective locations: arbitrary 
point in the cold solid state (XJ, fusion interface (xf), and surface just left of the 
radiation-absorption and vaporization region (xs); and where c,,~, cljq, and L, 
are the assumed-constant specific heats in the solid and liquid and the latent heat 
of fusion at  temperature T,. The vaIue of k is appropriate to the local state. In  
the cold interior of the wall, T = T, = constant, so the term q,, = - (k:dT/dx), 
in (4.2) is zero. 

4.2. Equations for the phase change 

If the flow equations were to be solved for the structure of the vaporization region 
e (from s to b in figure 2), one would need, in addition to the conservation equa- 
tions (3.3)-(3.5): (a)  a thermal equation of state applying during the entire pro- 
cess, ( b )  an expression representing the internal energy during the process, 
( c )  appropriate relations for T and qc during the process, and (d )  a relation for the 
variation of qT during the radiation absorption. Since, in this calculation, the 
structure of the region e is not solved, but the equations are to be used to relate 
conditions at  s and b, the required relations noted above must be replaced by 
appropriate conditions across B, for the overall process, to make the system 
determined. 

The conservation equations (3.3)-(3.5)) with (3.7), evaluated between s and b, 
give approximately 

e, - ea = csol(Tj - T a )  + Lf + C,,q(T, - T,) ; 

-qrb = pbub(eb-es+I)b/Pb+ &u~)-qcs+qc~-7bub, (4.4) 
where 1 -Pb/Ps % 1 has been used, and in which r and qr are assumed to be zero 
a t  s. 

The internal energy change across e is assumed to be approximately 

(4.5) 

for vaporization either at low rates or at  high rates, where L, is the latent heat of 
vaporization for low rates. (Thus, the internal energy of vaporization at a given 
temperature is assumed not to depend on the rate of vaporizati0n.t) It is also 
then appropriate to assume Tb M T,.? 

An appropriate equation of state for the overall process of the phase change at 
low and moderate rates (reversible process) is provided by Clapeyron's equation 

pb/prei = exp{(L~/R)(l/q,f- '/%)I* ( 4 . 6 ~ )  
Although Clapeyron's equation is derived assuming the phase change takes place 
reversibly at constant temperature and pressure, it appears to be qualitatively 

eb - e, = L, - RTb 

See appendix B of report: Martin (1966). 
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useful at  very high vaporization rates as well, even if the pressure varies appreci- 
ably during the process because of the development of viscous stress. This may 
be partly due to the exponential (rapidly varying) dependence of p b  on Tb. 
Further, a proposed intuitive modification of Clapeyron's equation to account 
for significant viscous stress 

(pb-'b)/r)ref = exp{(Lv/IZ) ('/?ref - '/%)I, (4.6b) 

does not yield significantly different results in the final calculations (to be seen), 
so use of either ( 4 . 6 ~ )  or (4.6b) is assumed to be approximately valid. A basis for 
the proposition of (4.6b) is the fol1owing:t Clapeyron's equation (4.6a) gives the 
state of the material at which vaporization occurs a t  low rates, essentially in an 
equilibrium process. Then, for the translational non-equilibrium case, in which 
p b  =/= p,, but in which p b - r b  z p ,  (from the momentum equation, with 
pu2 < p- r ) ,  one might expect the state of the material at s, where r = 0 and 
where the vaporization process begins, to be given by the same equation 

P s / p r e f  = ~ X P  {(Lv/@ (1/Tref - 1/!4)1* 
Then with the assumptions p b - T b  z p ,  and Tb z T,, one obtains (4.6b). 

A relation used by Opik (1958, p. 24) 

(Pu)b = *pb(@x)b ( 4 . 7 ~ )  

(where pb is the vapour density at saturation pressure and *@, is the average 
component of molecular velocity in the + x-direction), appears to be an appro- 
priate translational non-equilibrium condition, for vaporization a t  sufficiently 
high rates, to use for making the system of equations containing the translational 
non-equilibrium variables, T and qc, determined. It yields a mass flux with the 
same value as if the velocity distribution function were a one-sided Maxwellian 
distribution a t  the surface. It is taken as a reasonable gross approximation to 
describe the translational non-equilibrium of the rapid vaporization process, but 
the extent of its validity is not known. With evaluation of +Zx from kinetic 
theory and with the perfect gas equation of state for p at b, (4.7 a )  may be written 

(pu )b  = Pb(@,)b = (r)b/R%) (IZTblBn)' = (2TR) - 'pbq- ' ,  (4.7b) 

which is equivalent to another form used by Opik (1958, p. 161). However, if 
(4.7b) is substituted into 

Mb ub(?BTb)-' = ( p u ) b  (yRTb)-'(pC1IZTb), 

a simpler form of the relation (4.7b) is obtained as 

Mb = (ZT?)-*. (4.7c) 

4.3. Solution of the equations 

The equations for the regions x < x,, x, to x b )  and x > x b  = 0 are given respectively 
in @4.1,4.2 and 3.3 for Pr = 1 in the vapour. Together they constitute a deter- 
mined system if qrb andp,, are specified or obtained from an approximate solution 

t The same result was obtained by a slightly different approach in appendix B of tho 
report: Martin (1966). 

N 
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of flow over a blunt body with large emux from the surface. The equations are 
solved as follows. 

Combination of (4.2) and (4.4), with use of (3.18) for = 1, gives 

- qrb = Pbub(cab + iub2), 
where, from (4.3) and ( 4 4 ,  

cab R%+eb-e, (4.9a) 
= c,ol(Tf-Ta)+Lf+cl,,(Tb-Ta)+L, (4.9b) 

is the heat that must be transferred to a unit mass to raise it from the cold state 
at  temperature T, to the vapour state a t  temperature T,. With use Ofpb = pbh?Tb 
and U b  = M,(yRT,)3, (4.8) may be written 

-qrb = Pby3Mb(R%)'(cab/R% +&yMt),  (4.10) 

where yiM, is given by (4.7c), p b  is given by either of (4.6), and cab,  as a function 
of %, is given by (4.9b). This essentially gives qrb as a function of T,. 

For meteoritic stone, Opik (1958, p. 160) gives values for the mean atomic 
weight as 23 and the mean molecular weight of vapours as 50 g/mole. Hence 
R = 1.66 x lo6 cm2/sec2 OK, and, since the mean molecular weight is about twice 
the mean atomic weight, we assume the gas mixture can be approximated as a 
perfect diatomic gas with y = i. The reference values in ( 4 . 6 ~ )  or (4.6b) can be 
taken at  the mean boiling point, given by Opik (1958, p. 161) as 2960 OK (at 
1.013 x 106 dynes/cm2). The values of quantities needed in (4.9b) are also given 
by Opik (1958, pp. 61, 161): 

Lf = 2.65 x lo9 erg/g, 

T, = 200 OK, 

L, = 6.05 x 1O1O erg/g, 
clis = 1-1 x lo7 erg/g OK, 
Tf = 1800 OK. 

csol = 8.95 x lo6 erg/g OK, 

If (4.6a) is used, the procedure is now: 
(a) specify qrb and pe;  
( b )  choose trial values of % and iterate until (4.10), combined with (4.9b) and 

(c) compute the ratio p e / p b ;  

(d )  findpe/p, from (3.33), T,/% from (3.30), chc  from (3.31), and Me from (3.32); 

Representative values of - qrb and pe used are, respectively, 17,300 watts/cm2 
and 7-55 x 105 dynes/cm2, found from a simplified approximate flow calculation 
for a spherical body of radius rb = 4.62 m, moving at  15 km/sec at  an altitude of 
60 km in the earth's atmosphere. The calculations outlined above lead to: 
Mb = 0.333, T, = 2720 OK, p b  = 3.345 x lo5 dynes/cm2, Pb = 7-41 x 10-5 g/cm3, 
u, = 2.65 x lo4 cm/sec,pe/p, = 2.257,p,/pb = 2.215, Me = 0.149, andChc = 13.772. 

If instead the modified vaporization-state equation (4.6b) is used, the pro- 
cedure is slightly modified. A calculation yields the results: -qrb = 17,120 
watts/cm2, r, = 4.58 m, % = 2880 OK,p, = 7.00 x g/cm3, andu, = 2.73 x lo4 
cm/sec, with the remaining corresponding values the same as above. Thus it is 
seen that use of either ( 4 . 6 ~ )  or (4.6b) gives nearly the same results. 

At this point one can see that the system of equations would be undetermined 
without a translational non-equilibrium condition such as (4.7 c) unless one 

(4.6a), is satisfied; then T, andp, are known; 

(e) find Pb = p,/R% and ub = M,(?/RT,)*. 
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arbitrarily specified +rb = q,, = 0 (or an equivalent specification such as pe = pb) ,  
in order to make the equations determined. That arbitrary assumption is not 
justified for the general case, as discussed previously. It seems unlikely that use 
of any other independent relation in place of ( 4 . 7 ~ )  to make the equations deter- 
mined could make ? and qc identically zero for all cases. 

5. Summary and concluding remarks 
An attempt has been made to present an introduction to a possible pheno- 

menon defined herein as a boundary shock wave, a thin layer of gas through 
which viscous effects decay in very high-speed mass transfer accompanied by 
large heat transfer. Reasons were discussed for expecting occurrence of the 
viscous effects. The general theory of steady laminar flow through a plane 
boundary shock was developed. The theory was then applied to rapid vapour 
ablation from a body with flight conditions appropriate to a possible meteoric 
fireball in the earth’s atmosphere, in order to completely determine the para- 
meters in the theory for a particular case. 

Although the actual occurrence of a boundary shock wave may not be un- 
questionably predicted, the following conclusions can be drawn from the dis- 
cussions and theoretical developments in this paper: 

(a)  the necessary and sufficient conditions for a boundary shock to occur are: 
large efflux Reynolds number, and significant heat conduction or viscous stress 
(translational non-equilibrium) at the boundary; 

( b )  if theidealizationsmadearevalid, andin particular, if the translational non- 
equilibrium condition on the mass flux usedis approximately valid, then the theory 
and calculations will have predicted the occurrence of a boundary shock wave ; 

( c )  similarly, if the non-equilibrium mass-flux relation is replaced by any other 
appropriate independent relation and yields significant non-trivial values for the 
non-equilibrium variables (viscous stress and heat flux) at  the boundary, then 
the occurrence of the boundary shock would be predicted; 

(d) it seems unlikely that any appropriate independent relation for the mass 
flux would yield precisely the equilibrium solution, with zero values for the non- 
equilibrium variables, for all cases that could be considered. 

Experimental verification of a boundary shock wave occurring would be 
desirable. 
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